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Abstract

In this work, we explore almost all parts of the basic concepts in algebra such as isomorphism
groups, quotient groups, and fundamental theorem of homomorphisms. Firstly, we begin our stud-
ies with first chapter talking about isomorphism groups. There we introduce the main criterions to
make two groups isomorphic with each other. And we prove Cayley’s theorem in the next section.
After that we study some properties and applications of isomorphism. Secondly, we study quotient
groups. We introduce transforming from quotient sets to quotient groups and we study some appli-
cations of quotient groups. Thirdly, we work on fundamental theorem of homomorphisms. There
we introduce some definitions that related to concept of homomorphisms. Moreover, we work on
applications of fundamental theorem of homomorphisms.
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1
Introduction

Firstly, mathematicians start to study algebra by solving equation. Then they think that "Does
an equation have an answer?" and "if it does, how many solution for this equation?". Starting this
point, algebra is growing up until now. They observe that some subjects in mathematics such as
Analysis, Probability, Topology, Differential Equation, and Complex Analysis, that’s all contributed
from Algebra. Algebra is divided into five part such as Pre-Algebra, Elementary Algebra, Abstract
Algebra or Modern Algebra, Linear Algebra, and Universal Algebra. However, in our work, we
only study some parts in abstract algebra.

In algebra, which is a broad division of mathematics, abstract algebra (occasionally called
modern algebra) is the study of algebraic structures. Algebraic structures include groups, rings,
fields, modules, vector spaces, lattices, and algebras. The term abstract algebra was coined in the
early 20th century to distinguish this area of study from the other parts of algebra.

Algebraic structures, with their associated homomorphisms, form mathematical categories. Cat-
egory theory is a formalism that allows a unified way for expressing properties and constructions
that are similar for various structures.

Universal algebra is a related subject that studies types of algebraic structures as single objects.
For example, the structure of groups is a single object in universal algebra, which is called variety
of groups.

1.1 Brief Literature Review
Through the end of the nineteenth century, many perhaps most of these problems were in some

way related to the theory of algebraic equations. Major themes include:

• Solving of systems of linear equations, which led to linear algebra

• Attempts to find formulas for solutions of general polynomial equations of higher degree that
resulted in discovery of groups as abstract manifestations of symmetry

• Arithmetical investigations of quadratic and higher degree forms and diophantine equations,
that directly produced the notions of a ring and ideal.

Numerous textbooks in abstract algebra start with axiomatic definitions of various algebraic
structures and then proceed to establish their properties. This creates a false impression that in
algebra axioms had come first and then served as a motivation and as a basis of further study.
The true order of historical development was almost exactly the opposite. For example, the hyper-
complex numbers of the nineteenth century had kinematic and physical motivations but challenged
comprehension. Most theories that are now recognized as parts of algebra started as collections of
disparate facts from various branches of mathematics, acquired a common theme that served as a
core around which various results were grouped, and finally became unified on a basis of a common
set of concepts. An archetypical example of this progressive synthesis can be seen in the history of
group theory.
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The end of the 19th and the beginning of the 20th century saw a shift in the methodology
of mathematics. Abstract algebra emerged around the start of the 20th century, under the name
modern algebra. Its study was part of the drive for more intellectual rigor in mathematics. Initially,
the assumptions in classical algebra, on which the whole of mathematics (and major parts of the
natural sciences) depend, took the form of axiomatic systems. No longer satisfied with establishing
properties of concrete objects, mathematicians started to turn their attention to general theory.
Formal definitions of certain algebraic structures began to emerge in the 19th century. For example,
results about various groups of permutations came to be seen as instances of general theorems that
concern a general notion of an abstract group. Questions of structure and classification of various
mathematical objects came to forefront.

These processes were occurring throughout all of mathematics, but became especially pro-
nounced in algebra. Formal definition through primitive operations and axioms were proposed for
many basic algebraic structures, such as groups, rings, and fields. Hence such things as group the-
ory and ring theory took their places in pure mathematics. The algebraic investigations of general
fields by Ernst Steinitz and of commutative and then general rings by David Hilbert, Emil Artin
and Emmy Noether, building up on the work of Ernst Kummer, Leopold Kronecker and Richard
Dedekind, who had considered ideals in commutative rings, and of Georg Frobenius and Issai Schur,
concerning representation theory of groups, came to define abstract algebra. These developments
of the last quarter of the 19th century and the first quarter of 20th century were systematically
exposed in Bartel van der Waerden’s Moderne Algebra, the two-volume monograph published in
19301931 that forever changed for the mathematical world the meaning of the word algebra from
the theory of equations to the theory of algebraic structures.

1.2 Objectives of the Study
The objectives of this project work are as follows:

• Chapter 1: We introduce group isomorphism, Cayley’s theorem, properties of group isomor-
phism, and some applications of group isomorphism.

• Chapter 2: We study quotient groups and its applications.

• Chapter 3: We introduce fundamental theorem of homomorphisms and its applications.

1.3 Outline of the Thesis
In chapter 1, we start introducing some definitions related to group isomorphism, then we

start testing whether two groups are isomorphic to each other or not. Moreover, we prove Cayley’s
theorem and study some applications of group isomorphism. In chapter 2, we study quotient groups
and its applications. Finally, in chapter 3, we work on a special theorem. It is the fundamental
theorem of homomorphisms and at the end we also include some of its applications.

1.4 Preliminaries
To achieve our main objectives we have set for our work, we first have to build up all the basic

concepts needed then immediately we go ahead with our main theorems which are followed by some
useful applications, for each work.
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In chapter 1, we have to start from binary operation on two groups. Then we cannot study
all groups, so we keep trying to find a function that is bijective and also preserve both operations
of group. That is the definition of group isomorphism and we use its definition to study Cayley’s
theorem, properties, and its applications.

In chapter 2, before we know that quotient sets can be quotient groups, we take a concept of
subgroup. However, it does not work even it satisfies with condition of groups. For this we need a
concept of normal subgroups, then it works.

In chapter 3, we study quotient groups, homomorphism, image, and kernel of function, then
we start working on fundamental theorem of homomorphisms, and further working to word its
applications.
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2
Group Isomorphisms

2.1 Introduction
Suppose an American and a German are asked to count a handful or objects. The American

sat "one, two, three, four,..." whereas the German says "Eins, zwei, drei, vier,...". Are the two doing
different thing? No. They are both counting the objects, but they are using different terminology to
do so. An analogous situation often occurs with groups; the same group is describes with different
terminology.

In mathematics, an isomorphism is a structure-preserving mapping between two structures of
the same type that can be reversed by an inverse mapping. Two mathematical structures are
isomorphic if an isomorphism exists between them. The word isomorphism is derived from the
Ancient Greek: isos "equal", and morphe "form" or "shape".

The interest in isomorphisms lies in the fact that two isomorphic objects have the same prop-
erties (excluding further information such as additional structure or names of objects). Thus
isomorphic structures cannot be distinguished from the point of view of structure only, and may be
identified. In mathematical jargon, one says that two objects are the same up to an isomorphism.

Before we work on group isomorphism, we review some definition that involve our concept in
this chapter.

Definition 2.1.1 (Groups). A group is a nonempty set G with a binary operation ∗ : G×G→ G,
(x, y) 7→ x ∗ y satisfying the following conditions:

1. G is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c), ∀a, b, c ∈ G.

2. There is an element e in G such that a ∗ e = a and e ∗ a = a, ∀a ∈ G.

3. ∀a ∈ G, ∃a−1 ∈ G such that a ∗ a−1 = e and a−1 ∗ a = e.
If G be a group but it is also commutative i.e., ∀a, b ∈ G, a ∗ b = b ∗ a, that is called Abelian
group.

Definition 2.1.2 (Subgroups). Let G be a group and H a nonempty subset of G i.e.,

∅ 6= H ≤ G⇐⇒

{
h1h2 ∈ H

h−1
1 ∈ H

, ∀h1, h2 ∈ H

⇐⇒ ∀h1, h2 ∈ H, h1h
−1
2 ∈ H.

Definition 2.1.3 (Order of Groups and elements). Let G be a group. A number of elements in G
is called the order of G and denoted by |G|. When G is infinite, we write |G| =∞. Let x ∈ G and
n ∈ N. We denote

xn = x · x · x · · ·x (n times of x)
x−n = (x−1)n = x−1 · x−1 · x−1 · · ·x−1 (n time of x−1)

x0 = e

1



The smallest positive integer n such that xn = e is called the order of the element x in G and
denoted by |x| = n. If no such integer exists, we say that x has infinite order and denoted by
|x| =∞.
Definition 2.1.4 (Cyclic groups). Let G be a group. G is a cyclic group if there exists x ∈ G such
that G = 〈x〉. The group 〈x〉 is called the group generated by x and x is called the generator of
〈x〉.
Example 2.1.5. We give some examples of groups.

I. Infinite Groups

1. Matrix groups: GLn(C),GLn(R), SO(n),U(n) and SU(n), ... with multiplication opera-
tion.

2. (Z,+), (Q,+), (R,+), (C,+) are abelian group.
3. (SX , ◦), SX = {f : X → X,X 6= ∅|f is bijective} is called permutation groups.

II. Finite Groups

1. Zn = {0, 1, 2, 3, · · · , n− 1} with addition operation modulo n.
2. Z×

n = {m ∈ Zn|(m,n) = 1} with multiplication operation modulo n.
Example: Z×

8 = {1, 3, 5, 7}
3. G = {1,−1, i,−i} is a group under usual multiplication of complex number and it is an

abelian group.
4. If the set X = {1, 2, ..., n} we denote Sn is symmetric groups.

2.2 Group Isomorphism

We start to observe Z×
8 ,Z4, and (G,×). In binary operation of table shown that those groups

are different. And if we work transformation between Z×
8 and Z4 or G, then they are not corre-

spondence each other.

• Table of Z×
8

× 1 3 5 7

1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

• Table of (G,×)
× 1 −1 i −i
1 1 −1 i −i
−1 −1 1 −i i
i i −i −1 1
−i −i i 1 −1

• Table of Z4

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

But for Z4 and G can be one-to-one correspondence between them which transforms
0←→ 1, 1←→ i, 2←→ −1 and 3←→ −i. They exists an isomorphism.

• Table of Z4

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

• Table of G after changing order of el-
ement
× 1 i −1 −i
1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −1

Remark: We cannot use table of operations to check whether two groups are the same or not.
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Now consider:

•

•

•

G1

•

•

•

•

G2

G1 can not be the same as G2 since card(G1) 6= card(G2).

Consider if card(G1) = card(G2), then

•

•

•

•

G1

•

•

•

•

G2

f

1. There exists f : G1 → G2 such that f is bijective.

a

b

ab

f(a)

f(b)

f(a)f(b)

G1 G2

f

f

f

2. ∀a, b ∈ G, f(ab) = f(a)f(b).

Definition 2.2.1 (isomorphism groups). Let G1 and G2 be two groups. We say that G1 is iso-
morphic to G2 there exists a function f : G1 −→ G2 which satisfies:

1. f is bijection.

2. f preserves operator, that is f(ab) = f(a)f(b) for any a, b ∈ G.

We symbolize this fact by writing,

G1
∼= G2 or G1 ≈ G2.

3



Proposition 2.2.2. Any infinite cyclic group is isomorphic to Z.
Proof. Let G = 〈x〉 where |x| =∞.
Consider the map f : G→ Z given by xn 7→ n where n ∈ Z.
This map is well-defined and injective since for any xm, xn ∈ G

xm = xn ⇐⇒ m = n

where m,n ∈ Z.
Now f is surjective since for any n ∈ Z, ∃xn ∈ G such that f(xn) = n.
And f is operation preserving since for any xm, xn ∈ G, we have

f(xmxn) = f(xm+n) = m+ n = f(xm) + f(xn).

Therefore, any infinite cyclic group is isomorphic to Z.

Proposition 2.2.3. Any finite cyclic group 〈x〉 such that card(〈x〉) = n is isomorphic to Zn.
Proof. Let G = 〈x〉 where |x| = n.
Consider the map f : G −→ Zn given by

f(xp) = p mod n

where p ∈ Z.
Now f is injective since ∀p, q ∈ Z

p( mod n) = q( mod n)⇐⇒ xp = xq.

And f is surjective since ∀p( mod n) ∈ Zn, ∃xp ∈ G such that f(xp) = p mod n.
Furthermore f preserve group operation: Let xp, xq ∈ G then
f(xpxq) = f(xp+q)

= (p+ q) mod n

= (p mod n) + (q mod n)

= f(xp) + f(xq)
Therefore,

〈x〉 ∼= Zn.

Lemma 2.2.4. How does one recognize if two groups are isomorphic to each other?
1. Make a smart guess on a function f : G1 −→ G2 which might be an isomorphism.

2. Check that f is injective and surjective, that is bijective.

3. Check that f satisfies the preserve operation f(ab) = f(a)f(b).
Lemma 2.2.5. Show that two groups G1 and G2 are not isomorphic by observing:

• card(G1) 6= card(G2).

• |G1| 6= |G2|.

• G1 is cyclic but G2 is not.

• G1 is abelian but G2 is not.

4



2.3 Cayley’s Theorem
In the early days of modern algebra the word "group" had a different meaning from the meaning

it has today. In those days a group always meant a group of permutation. The only groups
mathematicians used were groups whose elements were permutations of some fixed set and whose
operation was composition.

There are something comforting about working with tangible, concrete things, such as groups of
permutations of a set. At all times we have a clear picture of what it is we are working with. Later,
as the axiomatic method reshaped algebra, a group came to mean any set with any associative
operation having a neutral element and allowing each element an inverse. The new notion of group
pleases mathematicians because it is simpler and more lean and sparing than the old notion of
groups of permutation; it is also more general because it allows many new things to be groups
which are not groups of permutations. However, it is harder to visualize, precisely because so many
different things can be groups.

It was therefore a great revelation when, about 100 years ago, Arthur Cayley discovered that
every group is isomorphic to a group of permutation. Roughly, this means that the groups of
permutations are actually all the groups there are! Every group is a group of permutations. This
great result is a classic theorem of modern algebra. Its proof is not very difficult.

Theorem 2.3.1. Every group is isomorphic to a group of permutations.

Proof. Let G be an arbitrary group. Consider the permutation group SG and for each g ∈ G,
we define a map

fg : G→ G

x 7→ gx

First, observe that fg ∈ SG for all g ∈ G. Indeed,

fg(x) = fg(y)⇐⇒ gx = gy ⇐⇒ x = y, ∀x, y ∈ G.

∀y ∈ G, ∃x = g−1y ∈ G, fg(x) = fg(g
−1y) = gg−1y = y.

In addition, the set G := {fg|g ∈ G} is a subgroup of SG since for any g1, g2 ∈ G and x ∈ G,
we have

(fg1 ◦ fg2) (x) = fg1(g2x) = g1g2x = fg1g2(x)⇐⇒ fg1 ◦ fg2 = fg1g2 ∈ G.

fg1 ◦ fg−1
1
(x) = fg1(g

−1
1 x) = g1g

−1
1 x = x.

⇐⇒ fg1 ◦ f−1
g1 = Id⇐⇒ f−1

g1 = fg−1
1
∈ G.

We will prove that G ∼= G. Consider a map:

f : G→ G

g 7→ fg.

This map is well-defined and injective.
Let g1, g2 ∈ G,

g1 = g1 ⇐⇒ g1x = g2x, ∀x ∈ G⇐⇒ fg1 = fg2 .

Now f is clearly surjective because ∀y ∈ G, ∃x = g−1y ∈ G such that

fg(x) = fg(g
−1y) = gg−1y = y.

5



And f preserves the operation: for any g1, g2 ∈ G, we have

f(g1g2) = fg1g2 = fg1 ◦ fg2 = f(g1) ◦ f(g2).

Therefore,
G ∼= G ≤ SG.

2.4 Properties of Group Isomorphism
After studying definition of group isomorphism, we now give a catalog of properties of isomor-

phisms and isomorphic groups.

1. Properties of Isomorphism Acting on Elements

Theorem 2.4.1. Suppose that f is an isomorphism from a group G onto a group G.

(a) f carries the identity of G to the identity of G.
(b) For every integer n and for every group element a in G, f(an) = [f(a)]n.
(c) For any element a and b in G, a and b commute if and only if f(a) and f(b) commute.
(d) G = 〈a〉 if and only if G = 〈f(a)〉.
(e) |a| = |f(a)| for all a in G (isomorphism preserves orders).
(f) For a fixed integer k and a fixed group element b in G, the equation xk = b has the same

numbers of solutions in G as does the equation xk = f(b) in G.
(g) If G is finite, then G and G have exactly the same number of elements of every order.

2. Properties of Isomorphism Acting on Groups

Theorem 2.4.2. Suppose that f is an isomorphism from a group G onto a group G.

(a) f−1 is an isomorphism from G onto G.
(b) G is abelian if and only if G is abelian.
(c) G is cyclic if and only if G is cyclic.
(d) If K is a subgroup of G, then f(K) = {f(k)|k ∈ K} is a subgroup of G.
(e) f(Z(G)) = Z(G) where Z(G) denotes the center of the group G.

Note: Z(G) = {x ∈ G|xg = gx, ∀g ∈ G}.

2.5 Application of Group Isomorphism
In algebra, isomorphisms are defined for all algebraic structures. Some are more specifically

studied; for example:

• Linear isomorphisms between vector spaces; they are specified by invertible matrices.

• Group isomorphisms between groups; the classification of isomorphism classes of finite groups
is an open problem.

6



Example: Suppose V is vector space on R and finite-dimensional.
Let G = {T : V → V |T is bijective, T, T−1 is linear}.
Let T : R3 → R3 be the linear transformation defined by

T

x1
x2
x3

 =

 x1 + 3x2 − x3
3x1 − x2 + 4x3
2x1 − 4x2 + x3



We get T ◦ T

x1
x2
x3

 = T

 x1 + 3x2 − x3
3x1 − x2 + 4x3
2x1 − 4x2 + x3


=

 x1 + 3x2 − x3 + 3(3x1 − x2 + 4x3)− (2x1 − 4x2 + x3)
3(x1 + 3x2 − x3)− (3x1 − x2 + 4x3) + 4(2x1 − 4x2 + x3)
2(x1 + 3x2 − x3)− 4(3x1 − x2 + 4x3) + (2x1 − 4x2 + x3)

 .

We must instead again, it is too hard. But we can find T ◦ T

x1
x2
x3

 by using multiplication of

matrix.

T (x) =

1 3 −1
3 −1 4
2 −4 1

x1
x2
x3


Then T (T (x)) =

1 3 −1
3 −1 4
2 −4 1

1 3 −1
3 −1 4
2 −4 1


= T ◦ T.

The set of linear transform has inverse on vector space of real number which has n-dimensions or
vector space of complex number which has n-complex dimensions, they isomorphic matrix groups
GLn(R) and GLn(C). We can study properties of linear transformation that instead to properties of
matrix. In fact, compositing of linear transformation is multiplication of matrix that correspondence
and inverse of linear transformation is inverse of matrix that correspondence each other.

7



3
Quotient Groups

3.1 Introduction
A quotient group or factor group is a mathematical group obtained by aggregating similar

elements of a larger group using an equivalence relation that preserves some of the group structure
(the rest of the structure is "factored" out). For example, the cyclic group of addition modulo
n can be obtained from the group of integers under addition by identifying elements that differ
by a multiple of n and defining a group structure that operates on each such class (known as a
congruence class) as a single entity. It is part of the mathematical field known as group theory.

3.2 Quotient Groups
Before we work on quotient groups, we recall some properties that involve in this section.

Definition 3.2.1 (Cosets). Let G be a group, and H a subgroup of G.

1. The right coset of H in G defined by Ha = {ha|h ∈ H}, ∀a ∈ G.

2. The left coset of H in G defined by aH = {ah|h ∈ H}, ∀a ∈ G.
Moreover, the set of left and right cosets are denoted respectively by

G⧸H = {aH|a ∈ G} and H\G = {Ha|a ∈ G}.

Proving quotient sets to be quotient groups
We let G is group and H ≤ G.
And let G⧸H = {aH|a ∈ G} (is a set).
We define an operation on G⧸H by coset multiplication:
(G, ∗) : (aH)(bH) := (ab)H

G⧸H ×
G⧸H −→

G⧸H
(aH, bH) 7→ (ab)H

Is this operation well-defined?
Answer: If H ≤ G then operation is not well-defined.
Via counterexample: if G = S3 = {ϵ, (12), (13), (23), (123), (132)}
And let H ≤ G such that H = {ϵ, (12)}

We get (13)H = {(13), (123)} = (123)H

(23)H = {(23), (132)} = (132)H

We get ((13)H, (23)H) = ((123)H, (132)H)

Then ((13)H)((23)H) = [(13)(23)]H = (132)H

But ((123)H)((132)H) = [(123)(132)]H = (ϵ)H
It means that one element in the domain assign two elements in the range. So the above operation

8



is not well-defined.

Is the operation on G⧸H satifies other conditions?

• Associative
We have [(aH)(bH)](cH) = [(ab)H](cH)

= (abc)H = (aH)(bc)H

= (aH)[(bH)(cH)]

• The identity: (eH = H)
We have eH = {eh|h ∈ H} = {h|h ∈ H} = H
such that (aH)(eH) = (ae)H = aH

(eH)(aH) = (ea)H = aH

• Inverse:
∀aH ∈ G⧸H, ∃a−1H ∈ G⧸H
such that (aH)(a−1H) = (aa−1)H = eH = H

(a−1H)(aH) = (a−1a)H = eH = H.

What condition on H that the operation on G⧸H defined above well-defined?

Definition 3.2.2 (normal subgroups). A subgroup H of a group G is called a normal subgroup of
G if aH = Ha for all a ∈ G. We denote this by H ◁ G.

Theorem 3.2.3. Let G be a group and H ◁ G. The set G⧸H = {aH|a ∈ G} is a group under the
operation

(aH)(bH) = (ab)H, ∀a, b ∈ G.

G⧸H is called the factor group, or quotient group of G by H.
Notice that :
(a+H)(b+H) = (a+ b) +H, we define (×) on G⧸H if (G,+).
(a+H) + (b+H) = (a+ b) +H, we define (+) on G⧸H if (G,+).

Proof. It is enough to prove that the operation is well-defined.
If H ◁ G then coset multiplication (Operation) is well-defined. How?

(aH, bH) ∈ G⧸H ×
G⧸H

(cH, dH) ∈ G⧸H ×
G⧸H

If (aH, bH) = (cH, dH) =⇒ (ab)H = (cd)H?

If

{
aH = cH then a ∈ cH

bH = dH then b ∈ dH.

Then

{
a = ch1

b = dh2
for some h1, h2 ∈ H.

Thus (ab)H = (ch1)(dh2)H

= c(h1d)h2H, since, Hd = dH

= cdh3h2H

= (cd)H , since h3h2H ⇐⇒ h3h2 ∈ H.

Therefore, ∗ on G⧸H is well-defined.
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Example: From above counterexample H 6◁ S3 where H = {ϵ, (12)} because (12)(123) 6=
(123)(12) where (123) ∈ S3.

3.3 Application of Quotient Groups
Remark: The set of left or right cosets are define respectively by

G⧸H = {aH|∀a ∈ G} and H\G = {Ha|∀a ∈ G}.
By the theorem of Larange :

|G| = |G : H||H| =
∣∣∣G⧸H∣∣∣ |H|

Why are quotient groups important? Well, when G is finite and H 6= {e}, G⧸H is smaller than G,
and its structure is usually less complicated than that of G. At the same time, G⧸H simulates G in
many ways. In fact, we may think of a factor group of G as a less complicated approximation of G.
What makes quotient groups important is that one can often deduce properties of G by examining
the less complicated group G⧸H instead.

Proposition 3.3.1. Let G be a group and H ◁ G. If G⧸H and H are finitely generated then G is
finitely generated. (A group is said to be finitely generated if it is generated by a finite subset of its
elements.).

Proof. Let G⧸H = 〈g1H, g2H, ..., gmH〉 and H = 〈h1, h2, ..., hn〉 for some positive integer m,n.
Let x ∈ G then xH ∈ G⧸H = 〈g1H, g2H, ..., gmH〉.

=⇒ xH = yH where y ∈ 〈g1, g2, ..., gm〉.
Then y−1x ∈ H = 〈h1, h2, ..., hn〉

=⇒ y−1x = h, h ∈ H.

=⇒ x = yh ∈ 〈g1, ..., gm, h1, ..., hn〉.
Therefore, G is finitely generated.

Proposition 3.3.2. Let G be a group and let Z(G) be the center of G. If G⧸Z(G) is cyclic, then
G is Abelian.

Proof. Recall that Z(G) = {x ∈ G|xg = gx, ∀g ∈ G}.
Let g ∈ G then gZ(G) ∈ G⧸Z(G) = 〈g0Z(G)〉.
Then ∃n ∈ Z such that gZ(G) = (g0Z(G))n = gn0Z(G)

⇐⇒ g−n
0 g = x, x ∈ Z(G)

=⇒ g = gn0x.
Thus, ∀g1, g2 ∈ G, ∃m,n ∈ Z such that g1 = gm0 x, g2 = gn0 y for some x, y ∈ Z(G).
Then g1g2 = (gm0 x)(gn0 y) = gm0 gn0xy = gm0 gn0 yx = g2g1.
Therefore, G is Abelian.
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Proposition 3.3.3. If every element of G⧸H has a square root, and every element of H has a
square root, then every element of G has a square root. (Assume G is abelian.)

Proposition 3.3.4. Let p be a prime number. If G⧸H and H are p-groups, then G is a p-groups.
A group G is called a p− group if the order of every element x in G is a power of p.
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4
Fundamental Theorem of Homomorphisms

4.1 Introduction
In abstract algebra, the fundamental theorem on homomorphisms, also known as the fundamen-

tal homomorphism theorem, relates the structure of two objects between which a homomorphism
is given, and of the kernel and image of the homomorphism.

Definition 4.1.1. Let G,G
′ be groups. A map f : G −→ G

′ is said to be an homomorphism if
it preserve the group operator; that is, f(ab) = f(a)f(b) for all a, b ∈ G. In addition, if:

• f is one-one then f is called monomorphsim.

• f is onto then f is called epimorphism.

• f is bijective then f is called isomorphism.

• f is bijective and G = G
′ then f is called automorphism.

Definition 4.1.2. Let f : G −→ G
′ be a group homomorphism. Then the sets:

• ker(f) = {x ∈ G|f(x) = eG′} ⊂ G is called the kernel of homomorphism f .

• Im(f) = {f(x)|x ∈ G} ⊂ G
′ is called the image of G in G

′ via homomorphism f .

Proposition 4.1.3. Let f be a group homomorphism from G to G
′. Then

1. Im(f) ≤ G
′.

2. ker(f) ◁ G.

Proof. 1. Let f(g1), f(g2) ∈ Im(f), such that g1, g2 ∈ G.
We have f(g1)f(g2) = f(g1g2) ∈ Im(f).

And [f(g1)]
−1 = f(g−1

1 ) ∈ Im(f).

Thus, Im(f) ≤ G
′
.

2. Let x, y ∈ ker(f) then f(x) = e and f(y) = e.
We have f(xy−1) = f(x)f(y−1)

= e[f(y)]−1

= ee−1

= e

So, xy−1 ∈ ker(f) then ker(f) ≤ G.
From definition of normal subgroups is aH = Ha, ∀a ∈ G.
Observation that aH = Ha⇐⇒ aHa−1 = H

⇐⇒ ∀a ∈ G, ∀h ∈ H, aha−1 ∈ H.
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If a ∈ ker(f) and x ∈ G.
Then f(xax−1) = f(x)f(a)f(x−1)

= f(x)f(a)[f(x)]−1

= f(x)[f(x)]−1, since f(a) = e

= e.

So, xax−1 ∈ ker(f) then ker(f) ◁ G.

Theorem 4.1.4 (Fundamental Theorem of Homomorphisms). Let f be a group homomorphism
from G to G

′. Then the mapping from G⧸ker(f) to G
′, given by g ker(f) 7→ Im(f), is an isomor-

phism. In symbols, G⧸ker(f) ∼= Im(f).

Proof. Consider the map f
′
: G⧸ker(f) −→ Im(f) defined by f

′
(g ker(f)) = f(g), g ∈ G.

Now f
′ is well-defined and injective since

a ker(f) = b ker(f)⇐⇒ b−1a ∈ ker(f)⇐⇒ f(b−1a) = e⇐⇒ f(a) = f(b).

And f
′ is surjective: since

f
′
(
G⧸ker(f)

)
= {f ′

(g ker(f))|g ∈ G} = {f(g)|g ∈ G} = Im(f).

Moreover f
′ is homomorphism:

f
′
[(a ker(f))(b ker(f))] = f

′
(ab ker(f))

= f(ab) = f(a)f(b)

= f
′
(a ker(f))f

′
(b ker(f)).

4.2 Application of Fundamental Theorem of Homomorphisms
After proving the fundamental theorem of homomorphisms, we can work on its applications.

Proposition 4.2.1. Let f : Z −→ Zn. For each n ∈ N then Z⧸nZ ∼= Zn.

Note: nZ ◁ Z and so Z⧸nZ = {m+ nZ|m ∈ Z}.

Proof. We have f : Z −→ Zn given by f(m) = m( mod n).
Observe that f is a homomorphism from Z to Zn.
And f is clearly surjective.
Consider ker(f) = {m ∈ Z : m( mod n) = 0}

= {m ∈ Z : m = kn, k ∈ Z}
= nZ = 〈n〉.

By Fundamental Theorem of Homomorphisms, we have that:

Z⧸ker(f) =
Z⧸nZ = Z⧸〈n〉 ∼= Im(f) = Zn.

Therefore, Z⧸nZ ∼= Zn.
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A picture of the isomorphism f : Z⧸12Z −→ Z12:

Proposition 4.2.2. Let (R,+) and (Z,+) be the additive group. And let T = {z ∈ C : |z| = 1} be
the circle group. Prove that R⧸Z ∼= T.

Review: (R,+), (Z,+) are abelian group. Then Z ◁ R and
R⧸Z = {x+ Z|x ∈ R}.

The circle group, denoted by T, is the multiplicative group of all
complex numbers with absolute value 1, that is, the unit circle in the
complex plane or simply the unit complex numbers. x

y
eiθ

θ

T = {z ∈ C : |z| = 1} = {ei2πx|x ∈ R}.

Proof. R⧸Z ∼= T. Let a map f : R −→ T given by f(x) = e2πix.
Note that f is well-define since, a, b ∈ R

a = b⇐⇒ 2πia = 2πib =⇒ e2πia = e2πib ⇐⇒ f(a) = f(b).

Now f is homomorphism because, let a, b ∈ R then

f(a+ b) = e2πi(a+b) = e2πia · e2πib = f(a) · f(b)
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And f is surjective since ∀y ∈ T, ∃x ∈ R such that y = ei2πx

=⇒ f(x) = ei2πx = y.
Moreover, ker(f) = {x ∈ R : ei2πx = 1}

= {n : n ∈ Z}.
Then ker(f) = Z. By Fundamental Theorem of Homomorphisms :

R⧸ker(f) ∼= T.

Therefore
R⧸Z ∼= T.
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5
Thesis Summary and Future Work

5.1 Thesis Summary
In algebra, which is a broad division of mathematics, abstract algebra (occasionally called

modern algebra) is the study of algebraic structures. Algebraic structures include groups, rings,
fields, modules, vector spaces, lattices, and algebras. The term abstract algebra was coined in the
early 20th century to distinguish this area of study from the other parts of algebra. And in this
work we have studied some of them in detail, namely group isomorphism, quotient groups, and
fundamental theorem of homomorphism.

We explored almost all parts of the basic concepts in group theory such as group isomorphism,
quotient groups, and fundamental theorem of homomorphisms. Firstly, we began our studies with
group isomorphism in chapter 1. In the content of this chapter, we recalled some definitions
which involve with concept in this chapter. Then we introduced relative between two group that
isomorphic each other and gave group isomorphism. And we proved Cayley’s theorem which is
interesting part. After that we studied some properties of isomorphism acting on elements and
on groups. In the end of this chapter, we worked on some applications of isomorphism in linear
algebra.

Furthermore, in the second chapter, we studied quotient groups. We introduced definition
of cosets. And we started studying what to transform quotient sets to quotient groups through
denoting operation on G⧸H with H which is subgroup of G. We took conterexample, and then we
took definition of normal subgroups which is special condition to work on quotient groups. In the
end of chapter 2, we studied applications of quotient groups.

Finally, in the last chapter, we introduced fundamental theorem of homomorphism. We started
with definition of homomorphism, image, and kernel. Then we worked on proposition of image and
kernel. After that, we studied fundamental theorem of homomorphisms and also its application.
In this section, we proved that Z⧸nZ ∼= Zn and R⧸Z ∼= T which are interesting parts in this section.

5.2 Future Work
There are many more interesting parts I am passionate about learning in abstract algebra.

In the future, I am hoping to experience other tools such as field, ring, and trying to find some
connections between them.
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